Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Slide 8

Welcome

principal investigator

As an animal, your nervous system allows you to sense and respond to your environment, form and retrieve memories, and learn from past experiences. All of this is possible because the billions of nerve cells in your brain and spinal cord are connected to each other and to other cells throughout your body in very precise ways. Although our brains change as we grow and age, many of the most fundamental connections are formed very early during embryonic development. And, although everyone’s brain is unique, basic patterns of neural connectivity are shared in humans and non-human animals alike.

Our lab is interested in how animal nervous systems are properly wired during development. Using the embryonic insect nervous system as a model, we study the genetic, molecular, and cellular mechanisms that specify patterns of neuronal connectivity. We use insects like the fruit fly Drosophila melanogaster because they have relatively simple nervous systems, but they are built using the same principles as more complex brains like our own. The molecular and genetic tools available in Drosophila allow us to manipulate genes and cells in the developing fly embryo while we examine how they assemble themselves into a functioning nervous system. For more details about specific projects we are working on in the lab, see our Research page.

Lab News

  • Sep 20, 2018, Tim's tenure & promotion seminar
    Tim delivered a research seminar today to the Dept of Biological Sciences here at U of A, as part of his application for promotion to Associate Professor with tenure. The title of his talk was "Wiring the insect nervous system: the genetics of axon guidance in Drosophila."
  • Jul 5, 2018, Good luck Haley!
    Haley Brown is on her way to Bloomington, IN today to join the Genome, Cell & Developmental Biology (GCDB) PhD program at Indiana University. We'll miss you Haley!
  • May 24, 2018, Welcome Ali!
    Undergraduate researcher Ali Stone is the newest member of the Evans lab. Ali's project will use CRISPR-based gene modification approaches to study the function of axon guidance genes in the Tribolium embryonic CNS.
  • May 11, 2018, University of Arkansas graduates Alli Loy and Savanna Cathey
    Evans lab undergraduate students Alli Loy and Savanna Cathey were awarded bachelors degrees in Biology from  the University of Arkansas at Fulbright College commencement today. Congratulations Alli and Savanna!
  • Read more news